SYNTHESIS OF 2-SUBSTITUTED 1,4-DIOXANES FROM 1,2-EPOXY-3-(2-CHLOROETHOXY)PROPANE

B. F. Pishnamazzade and A. Kh. Mamishov

UDC 547.841.07

A number of 2-substituted 1,4-dioxanes were synthesized from β -chloroethyl glycidyl ether, the appropriate alcohols, and diethylamine.

Cyclic diethers (dioxane, for example) are good solvents for resins, fats, and cellulose esters [1], and some of their derivatives display biological and pharmacological activity [2]. Dioxane and its derivatives are obtained by various methods [3, 4]. However, these methods are somewhat unusual and do not enable one to obtain 1,4-dioxanes that contain different substituents.

We have synthesized a number of representatives of 2-substituted 1,4-dioxanes (see Table 1) by the reaction of various hydroxyl-containing compounds and diethylamine with β -chloroethyl glycidyl ether and subsequent dehydrohalogenation.

$$ROH + O \begin{pmatrix} CH_2 & CH_2 & CH_2 & CH_2 \\ CHCH_2OCH_2CH_2CI & & ROCH_2 & CH_2 & CH_2 \\ CHCH_2OCH_2CH_2CI & & CH_2 & CH_2 \\ CHCH_2CH_2CI & & CH_2 & CH_2 \\ CHCH_2CH_2CI & & CH_2 & CH_2 \\ CHCH_2CI & & CH$$

The yield decreases as the molecular weight of the alcohol decreases; this is apparently a consequence of the reaction of the initially formed secondary hydroxyl groups with β -chloroethyl glycidyl ether, i.e., the tendency for telomerization increases as the molecular weight of the alcohol decreases.

When secondary amines are used in place of alcohol, 2-dialkylaminomethyl-1,4-dioxanes are formed:

Alternative synthesis was used in the case of 2-allyloxymethyl-1,4-dioxane in order to establish the structures of the compounds obtained. The IR spectrum of this preparation contains a band characteristic for the 1,4-dioxane ring (1126 cm⁻¹) and a whole set of absorption bands caused by the skeletal vibrations of the ring and the methylene groups [5]. The band at 1644 cm⁻¹ indicates the presence of a vinyl group.

$$\frac{\text{CICH}_2\text{CH}_2\text{OH} + O \frac{\text{CH}_2}{\text{CHCH}_2\text{OCH}_2\text{CH} = \text{CH}_2}}{\text{CHCH}_2\text{OCH}_2\text{CH} = \text{CH}_2} \frac{\text{SnCl}_4}{\text{CH}_2} + \frac{\text{CH}_2}{\text{CH}_2} \frac{\text{CH}_2}{\text{CH}_2\text{OCH}_2\text{CH} = \text{CH}_2} \frac{\text{NaOH}}{\text{OH}_2} + \frac{\text{OH}_2}{\text{CH}_2\text{OCH}_2\text{CH} = \text{CH}_2} \frac{\text{NaOH}}{\text{CH}_2\text{OCH}_2\text{CH} = \text{CH}_2} + \frac{\text{NaOH}_2}{\text{CH}_2\text{OCH}_2\text{CH} = \text{CH}_2} \frac{\text{NaOH}_2}{\text{CH}_2\text{OCH}_2\text{CH} = \text{CH}_2} + \frac{\text{NaOH}_2}{\text{CH}_2\text{OCH}_2\text{CH} = \text{CH}_2} + \frac{\text{NaOH}_2}{\text{CH}_2\text{OCH}_2\text{CH} = \text{CH}_2} + \frac{\text{NaOH}_2}{\text{CH}_2\text{CH}_2\text{CH}_2} + \frac{\text{NaOH}_2}{\text{CH}_2\text{CH}_2\text{CH}_2} + \frac{\text{NaOH}_2}{\text{CH}_2\text{CH}_2} + \frac{\text{NaOH}_2}{\text{CH}_2\text{CH}_2} + \frac{\text{NaOH}_2}{\text{CH}_2\text{CH}_2} + \frac{\text{NaOH}_2}{\text{CH}_2\text{CH}_2} + \frac{\text{NaOH}_2}{\text{CH}_2} + \frac{\text{NaOH}$$

EXPERIMENTAL

2-Allyloxymethyl-1,4-dioxane (XIII). A. A 20-g (0.15 mole) sample of 1,2-epoxy-3-(2-chloroethoxy)-propane was added by drops with stirring in the course of 1 h at 35-40° to a mixture of 43.5 g (0.75 mole)

Sumgait Branch, Academician Yu. G. Mamedaliev Institute of Petrochemical Processes, Academy of Sciences of the Azerbaidzhan SSR. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 2, pp. 161-163, February, 1973. Original article submitted November 30, 1971.

© 1975 Consultants Bureau, a division of Plenum Publishing Corporation, 227 West 17th Street, New York, N. Y. 10011. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for \$15.00.

		Yield, %	8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
$1 \\ ROCH_2 $	Calc., %	H	0.000000000000000000000000000000000000
		U	2,200 2,200
	Found, %	. н	8.9.00 9.00 9.00 9.00 9.00 9.00 9.00 9.0
		o ,	74.45 60.00
	Empirica1 formula		C. H. 120.5 C. H. 120.5 C. H. 160.5 C. H. 160.5 C. H. 160.5 C. 16.1 H. 160
	MR_D	calc.	32,63 37,55 41,87 46,49 46,49 48,90 53,52 48,61 41,40 41,40 65,40 65,40 65,40 65,40 65,40 65,74 72,24 72,24
		found	32.51 37.27 41.50 41.72 46.44 42.17 53.49 53.49 62.59 62.59 62.59 62.59 62.59 63.06
	n _D ²⁰		1,4330 1,4330 1,4330 1,4360 1,4360 1,4640 1,4650 1,5650 1,
	d ₄ 20		1,0545 1,0191 1,0070 0,9917 0,9946 1,1218 1,0370 1,0994 1,1501 1,0294 1,6623 1,6623 1,6623 1,1515 1,1515 1,03966 1,03994 1,1501 1,0394 1,1501 1,0394 1,1501 1,0394 1,1501 1,0394 1,0394 1,0394 1,0394 1,0394 1,0394 1,0394 1,0394 1,0394 1,0394 1,0394 1,0394
	bp, °C (mm)		69—70 (20) 81—82 (22) 86—87 (15) 83—84 (17) 60—62 (1) 89—90 (15) 71—72 (1) 87—89 (1) 79—80 (1) 99—100 (1) 99—101 (1) 99—101 (1) 99—101 (1) 99—101 (1) 91—101 (1) 91—1
	æ		CH ₃ C ₂ H ₃ C ₂ H ₄ P.C ₃ H ₄ P.C ₃ H ₄ P.C ₄ H ₄ P.C ₄ H ₄ P.C ₄ H ₅ C ₄ H ₅ C ₄ H ₅ C ₄ H ₅ C ₅ H ₆ C ₅ H ₇ C ₆ H ₇ C
TABLE		Comp.	

^cTetrahydrofurfuryl. ^dFurfuryl. Calculated, %: 19.6. bFound, %: CI 17.1. Calculated, %: CI 16.9. Calculated, %: Br 50.3 ^eFound, %: Br 50.0. aFound, %: Cl 19.2.

of allyl alcohol and 0.4 ml of SnCl₄, after which stirring was continued for another 2 h. The excess alcohol was removed by distillation, and the residue was added from a dropping funnel to a flask containing 15 g of powdered NaOH and 65 ml of ether. The mixture was stirred at the boiling point of the ether for 3-4 h, after which the ether was decanted, and the resulting salt was dissolved in water. The aqueous solution was extracted twice with 30-ml portions of ether, and the combined ether extracts were washed with 5% aqueous acetic acid solution. The ether solution was dried with calcium chloride, the solvent was removed, and the residue was distilled to give 16.5 g (70%) of 2-allyloxymethyl-1,4-dioxane (see Table 1).

Dioxanes I-XII and XVII (see Table 1) were similarly synthesized.

B. A 17.1-g (0.15 mole) sample of 1,2-epoxy-3-allyloxypropane was added with stirring at 35-40° in the course of 1.5 h to a mixture of 60.3 g (0.75 mole) of ethylene chlorohydrin and 0.3 ml of SnCl₄, after which stirring was continued for 2 h. The excess alcohol was removed by distillation, and the residue was dehydrohalogenated and worked up as described above. Distillation gave 15.7 g (66%) of XIII with bp 79-80° (10 mm), d_4^{20} 1.0310 and n_D^{20} 1.4515. Found,%: C 60.3; H 8.8. MRD 41.31. $C_8H_{14}O_3$. Calculated,%: C 60.7; H 8.9. MRD 41.40.

2-(2,3-Dibromopropoxy)methyl-1,4-dioxane (XIV). A 17.5-g (0.11 mole) sample of bromine was added from a dropping funnel with stirring to a cooled (from -10 to -14°) mixture of 17.3 g (0.11 mole) of dioxane XIII and 50 ml of chloroform, after which stirring was continued for 10-15 min. The mixture was then neutralized with NaHCO₃ solution, and the aqueous portion was extracted twice with ether. The combined extracts were dried with CaCl₂ and distilled to give 32.6 g (93%) of XIV (see Table 1).

2-(2-Phenoxyethoxy) methyl-1,4-dioxane (XV). A solution of 5.2 g (0.13 mole) of NaOH in 7 ml of water was added to 12.3 g (0.13 mole) of freshly distilled phenol, after which the mixture was stirred at 90-95° for 35 min and 21.6 g (0.12 mole) of dioxane VII was added by drops. The mixture was then diluted with ether and neutralized, and the aqueous portion was extracted with ether. The combined ether extracts were dried with CaCl₂ and distilled to give 23 g (81%) of XV.

2-(4-Phenoxybutoxy)methyl-1,4-dioxane (XVI). This compound was similarly obtained (see Table 1).

2-Diethylaminomethyl-1,4-dioxane (XVIII). A mixture of 8 g (0.11 mole) of diethylamine, 15 g (0.11 mole) of β -chloroethyl glycidyl ether, and two to three drops of water were stirred at 60-70° for 5 h, after which it was added to a flask containing 9 g of

powdered NaOH and 40 ml of diethyl ether. The mixture was stirred at the boiling point of the ether for 3-4 h and worked up by the usual method (see method A in the synthesis of dioxane XIII) to give 15.6 g (82%) of XVIII with bp 93-94° (1 mm), d_4^{20} 0.9520 and n_D^{20} 1.4470. Found,%: C 62.1; H 11.1; N 7.9. MR $_D$ 48.62. $C_9H_{19}NO_2$. Calculated,%: C 62.3; H 11.0; N 8.1. MR $_D$ 48.78.

LITERATURE CITED

- 1. M.S. Malinovskii, Olefin Oxides and Their Derivatives [in Russian], Goskhimizdat, Moscow (1961), p. 13.
- 2. A. M. Paken, Epoxide Compounds and Epoxide Resins [in Russian], Goskhimizdat, Leningrad (1962), p. 215.
- 3. A.E. Favorskii, Zh. Russk. Khim. Obshchestva, 38, 741 (1906).
- 4. A. Tovscheff, H. Reinheckel, L. Stoilov, and K. Haage, Monatsh., 99, 545 (1968); Ref. Zh. Khim., 10Zh324 (1969).
- 5. A. P. Klimov, M. A. Svechnikov, V. I. Shevchenko, V. V. Smirnov, S. B. Zotov, and F. V. Kvasnyuk-Mudryi, Khim. Geterotsikl. Soedin., 208 (1969).